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mossspider provides an implementation of a targeted maximum likelihood estimator (TMLE) for network-dependent
data with stochastic policies (network-TMLE) in Python 3.6+. For in-depth details on network-TMLE, see van der
Laan (2014), Sofrygin and van der Laan (2017), or Ogburn et al. (2017). mossspider get its name from the spruce-fir
moss spider, a tarantula that is both the world’s smallest tarantula and native to North Carolina.

Network-TMLE is an estimator for causal effects with network-dependent data. Network-TMLE here further relies
on a weak dependence assumption (only the immediate contacts of a unit have an effect on that unit’s outcome) to
make progress in this setting. This is further accomplished via parametric summary measures of immediate contacts’
covariates. The following is a brief overview. For further details, please see the references below.

Here, the estimand is the expected mean of an outcome under a policy (indicated by 𝜔) for a super-population of
networks each consisting of 𝑛 units. Due to assumptions for the variance, mossspider focuses on this estimand, but
is further conditional on the distribution of W covariates in the network. This estimand can be written as

For identification of 𝜓, we rely on the following assumptions: causal consistency, exchangeability, and positivity.
Respectively, these are written as

If 𝐴𝑖 = 𝑎,𝐴𝑠
𝑖 = 𝑎𝑠 then 𝑌𝑖 = 𝑌𝑖(𝑎, 𝑎

𝑠)

𝑌 (𝑎, 𝑎𝑠) ⨿𝐴,𝐴𝑠|𝑊,𝑊 𝑠 for all 𝑎 ∈ 𝒜, 𝑎𝑠 ∈ 𝒜𝑠

If
*

Pr(𝐴 = 𝑎,𝐴𝑠 = 𝑎𝑠|𝑊,𝑊 𝑠) > 0 then Pr(𝐴 = 𝑎,𝐴𝑠 = 𝑎𝑠|𝑊,𝑊 𝑠) > 0 for all 𝑎, 𝑎𝑠

These assumptions further require that (1) the network is perfectly measured, and (2) the parametric from of the sum-
mary measure𝐴𝑠 is known. This set of assumptions is unverifiable and thus needs to be based on substantive knowledge.

Given these assumptions, 𝜓 is identified and we can estimate using network-TMLE. For how network-TMLE operates
(as implemented in mossspider) see the Overview page on the sidebar.

CONTENTS 1
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CHAPTER

ONE

INSTALLATION:

mossspider can be downloaded using PyPI. To install mossspider, use the following command in terminal or com-
mand prompt

python -m pip install mossspider

There are several dependencies for mossspider. These consist of NumPu, SciPy, Pandas, NetworkX, statsmodels,
patsy, and Matplotlib. Note that NetworkX must be at least version 2.0.0 to operate properly.

To replicate the tests in tests/ you will need to install pytest (but this is not necessary for general use of the package).

3
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CHAPTER

TWO

CONTENTS:

2.1 Overview

Here, we will provide an example application of mossspider to highlight some of the available features.

2.1.1 Data Generation

Before demonstrating the application of network-TMLE, we use mossspider to generate some generic example data.
Here, we will generate both a network and the covariates for that network.

Network

mossspider provides a few functions to randomly generate networks with different structural features. Here, we will
use the mossspider.dgm.uniform_network function. We will generate a network with a uniform degree distribution
with degrees between 1-4 and consists of 500 nodes.

# importing uniform network
from mossspider.dgm import uniform_network

G = uniform_network(n=500, # Number of nodes
degree=[1, 4], # Min and Max degree
seed=2022) # Seed for consistency

The network generation functions further assign baseline covariates W in the network. For the estimand described, W
is assumed to be held constant in the super-population of networks. Therefore, the data generation step only assigns
baseline covariates once. Here, W consists of a single binary covariate.

Truth or Reference Values

Next, we will generate data. First, we can use the mossspider.dgm.generate_truth function to estimate the mean
under the policy of interest, 𝜔. This function takes the specified policy, applies it to the network, calculates the outcomes
from the true outcome model, and then returns the mean. To estimate the truth for the super-population of networks,
we run this function a ‘large’ number of times and take the mean of the means. Below is code that does this for a policy
where everyone has their probability of action 𝐴 set to 0.65.

import numpy as np
from mossspider.dgm import generate_truth

(continues on next page)
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(continued from previous page)

# Setup values to evaluate at
omega = 0.65 # Policy of interest
true_p = [] # Empty storage

# Calculate truth or reference values
for i in range(5000): # Sim 5k times

y_mean = generate_truth(graph=G, # Mean for graph
p=omega) # ... under omega

true_p.append(y_mean) # Store mean

truth = np.mean(true_p) # Calculate mean of means
print(truth)

Therefore, we have simulated what the estimand is expected to be. Remember, that this estimand will change based on
the distribution of W. Therefore, changing the seed in the generation of G will result in a different truth value here.

Observed Data

Next, we can simulate the observed data. Instead of using the policy of interest,𝐴 and 𝑌 are assigned according to some
mechanism that is not the policy of interest. In practice, this mechanism is unknown and consists of the nuisance models
that must be estimated to use network-TMLE. We will do this using the mossspider.dgm.generate_observed
function, which returns a network with assigned actions and outcomes

from mossspider.dgm import generate_observed

H = generate_observed(G, seed=202203)

Notice that if you examine the network, nodes have three attributes: W, A, and Y. NetworkTMLE expects the input data
to be formatted in a similar manner (a networkx.Graph object with assigned node attributes).

2.1.2 Network-TMLE

mossspider implements network-TMLE through the NetworkTMLE function. The following details how
NetworkTMLE operates and broadly what happens behind the scenes.

Initialization

As mentioned, NetworkTMLE expects the data to be provided in a particular form. This is to ensure all the calculations
and data extractions go smoothly behind the scenes. Most importantly, NetworkTMLE expects the data to be provided
as a networkx.Graph object. Furthermore, all covariates must be provided as node attributes.

Below is the initialization of NetworkTMLE for the previously generated data set

ntmle = NetworkTMLE(network=H, # NetworkX graph
exposure='A', # Exposure in graph
outcome='Y', # Outcome in graph
verbose=True) # Print model summaries

Besides the network, NetworkTMLE requires that the label for the action (referred to as exposure here) nad the label
for the outcome in the graph are provided. There are optional arguments for the confidence-level (alpha), whether to

6 Chapter 2. Contents:
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apply a restriction based on degree (degree_restrict), and whether to display nuisance model summary information
(verbose). By default no degree restriction is applied and 95% confidence intervals are provided.

Behind the scenes, NetworkTMLE extracts the covariates from the graph, creates a pandas.DataFrame, and calculates
summary measures. Covariates are provided via networkx.Graph instead of a pandas.DataFrame to ensure that
summary measures are all correctly calculated. This is then merged with the degree of each node (with the optional
degree restriction applied). Finally, storage for intermediate pieces are created. Continuous outcomes are further
bounded to be (0, 1) for the targeting step later on.

Exposure Nuisance Model

Next, we need to specify the exposure nuisance model. These models are used to calculate the following weights:

Pr*(𝐴,𝐴𝑠|𝑊,𝑊 𝑠)

Pr(𝐴,𝐴𝑠|𝑊,𝑊 𝑠)

where the numerator is from the policy of interest and the denominator is based on the observed distribution of actions.
Here, we estimate these models by factoring the probabilities as

Pr(𝐴,𝐴𝑠|𝑊,𝑊 𝑠) = Pr(𝐴|𝑊,𝑊 𝑠) Pr(𝐴𝑠|𝐴,𝑊,𝑊 𝑠)

Therefore, two models need to be specified: one for 𝐴, and one for 𝐴𝑠. For 𝐴, we will use a logistic model

# Model for Pr(A | W, W^s)
ntmle.exposure_model(model="W + W_sum", # Parametric model

custom_model=None) # ... optional argument

Certain flexible models (e.g, sci-kit learn models) can also be used. Note that these must be classifiers and are provided
via the optional custom_model argument.

Next, a model for the summary measure needs to be specified. Importantly, the summary measure and an appropriate
model must be selected. For available summary measures, see the Summary Measures page. Here, we will use the
following summary measure

𝐴𝑠
𝑖 =

𝑛∑︁
𝑗=1

𝐴𝑗𝒢𝑖𝑗

where 𝒢 is the adjacency matrix. This summary measure is a simple count of the immediate contacts with 𝐴 = 1.
Now, we can specify the exposure mapping model

# Model for Pr(A^s | A, W, W^s)
ntmle.exposure_map_model(model='A + W + W_sum', # Parametric model

measure='sum', # Summary measure for A^s
distribution='poisson') # Model distribution to use

Here, the model must be provided as well as the summary measure (measure) and the distribution to use for the model
(distribution). Since our summary measure is a count, we use a Poisson regression model. While custom_models
are provided, care must be taken to ensure that the distribution of that custom model agrees with the distribution
argument. Otherwise, weights will not be estimated correctly.

In both of these steps, we are only specifying the parametric form of these models and the summary measures to use.
The actual estimation of the weights is done later in the NetworkTMLE.fit step.

2.1. Overview 7
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Outcome Nuisance Model

Next, we need to specify and estimate the outcome nuisance model: 𝐸[𝑌 |𝐴,𝐴𝑠,𝑊,𝑊 𝑠]. Unlike the weights, we can
(and will) estimate the outcome model in this function. To specify the outcome model

# Model for E[Y | A, A^s, W, W^s]
ntmle.outcome_model(model='A + A_sum + W + W_sum',

custom_model=None)

For binary outcomes (internally detected in the initialization), a logistic model is used. For continuous outcomes, the
default is linear regression but other models can be used by specifying the optional distribution argument. Finally,
custom models can also be used here. There is more flexibility in what algorithms could be considered (since we only
need the predicted values).

Notice that the summary measure for the outcome nuisance model and the exposure nuisance model are the same for
𝐴𝑠.

Behind the scenes, the function saves the model specification, fits the specified outcome model, and generates predicted
values of the outcome under the observed values of 𝐴 and 𝐴𝑠. These estimates are all stored interally for the next step.

Estimation

Finally, we can estimate the conditional mean under the policy of interest. NetworkTMLE takes the policy in the form
of a float (which sets everyone to the same probability of having 𝐴 = 1) or as a vector (assigns each unit their own
probability of 𝐴 = 1). Here, the policy of interest is Pr(𝐴𝑖) = 0.65.

# Estimation
ntmle.fit(p=0.65, # Policy

samples=500, # ... replicates for MC integration
bound=None, # ... option to bound weights
seed=20220316) # ... seed for consistency

Other optional arguments include settings the number of samples to use in the Monte Carlo integration procedure
(samples, see below for details on this), truncation of estimated weights (bound), and a random seed for consistent
results of the estimation procedure.

Behind the scenes, there are lots of steps that occur. First, checks are applied to make sure the nuisance models are
all specified and the policy is been specified in a compatible format. Next, the weights are estimated. This is done
by estimating the denominator using the observed data. For the numerator, we can’t use the policy of interest directly
(since it is specified in terms of 𝐴𝑖 and not 𝐴𝑖, 𝐴

𝑠
𝑖 ). Therefore, we use a Monte-Carlo procedure. Briefly, we generate

samples copy of the data. To each copy, the stochastic policy is applied. Using all copies of the data with the copy of
the stochastic policy applied simultaneously, the exposure nuisance models are estimated. Then the observed 𝐴𝑖, 𝐴

𝑠
𝑖

and estimated model parameters are used to estimate the numerator. If bound is specified, the weights are then bounded.

Next, the targeting step is applied. This involves taking the predicted values from NetworkTMLE.outcome_model and
the estimated weights and fitting a weighted intercept-only logistic model. Then the outcome model is used to predict
the outcome under the policy of interest and is updated using the estimated targeting model. Since stochastic policies
have a number of different possible distributions, a Monte-Carlo procedure is again used. Here, we re-use the data
sets generated in the weight estimation step. Using the 𝐴𝑖, 𝐴

𝑠
𝑖 under the policy, predicted values of the outcomes are

generated, updated via the targeting model, averaged over each data set, and finally averaged across the samples.

Finally, the variance is calculated. Two variances are calculated. The first assumes that all dependence is due to direct
transmission only, while the second allows for direct and latent transmission. For theoretical reasons, the latter will
generally be preferred.

Note that increasing samples will result in a more ‘stable’ estimate (it will be less subject to random noise if a different
seed had been used). Personally, I have found good performance with 100-500. Ideally, you would run as much as

8 Chapter 2. Contents:
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possible. Unfortunately, the most computationally intensive part is the generation of copies of the data set. Therefore,
run-times are highly dependent on the value used for samples.

Summary Results

A summary of the results can be printed to the console via:

# Displaying results
ntmle.summary(decimal=4)

To increase the number of decimals displayed, use the decimal argument.

Diagnostic

Finally, we have a diagnostic available. The diagnostic provides a plot to visually assess how well-supported the policy
of interest is by the observed distribution of A. Briefly, the diagnostic plots the summary measure 𝐴𝑠

𝑖 by 𝐴𝑖 in the
observed data. This is then contrasted with 𝐴𝑠

𝑖 under the policy (as generated in the Monte-Carlo step). For well-
supported policies, the observed data and generated data under the policy should overlap. If there is little overlap, this
is indicative of the policy of interest being poorly-supported by the data. Poorly-supported policies can result in biased
estimation and poor confidence interval coverage. For details see [. . . ].

The diagnostic plot can be generated via

import matplotlib.pyplot as plt

ntmle.diagnostics()
plt.show()

2.1.3 Additional Examples

Additional examples are provided here.

2.2 Summary Measures

The following provides documentation for the available summary measures in mossspider. Currently, mossspider
does not support fully custom summary measures. We are working on how to best implement this option.

Column names for all summary measures currently in the data can be checked via

ntmle = NetworkTMLE(G, exposure='A', outcome='Y')
print(ntmle.df.columns)

2.2. Summary Measures 9
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2.2.1 Basic Measures

The following basic summary measures are always available for model specifications. They are all calculated by default.
They include: sum, mean, variance, mean distance, and variance distance.

Throughout this section, let 𝑋 indicate the covariate the summary measure is being calculated for, and 𝒢 indicate the
adjacency matrix for the network.

Sum

The sum summary measure is defined as

𝑋𝑠
𝑖 =

𝑛∑︁
𝑖=1

𝑋𝑗𝒢𝑖𝑗

For the covariate X in the data, the sum summary measure column is accessed by X_sum.

Mean

The mean summary measure is defined as

𝑋𝑠
𝑖 =

∑︀𝑛
𝑖=1𝑋𝑗𝒢𝑖𝑗∑︀𝑛
𝑖=1 𝒢𝑖𝑗

For the covariate X in the data, the mean summary measure column is accessed by X_mean.

Variance

The variance summary measure is defined as

𝑋𝑠
𝑖 =

∑︀𝑛
𝑖=1(𝑋𝑗 −𝑋𝑖)

2𝒢𝑖𝑗∑︀𝑛
𝑖=1 𝒢𝑖𝑗

For the covariate X in the data, the variance summary measure column is accessed by X_var.

Mean Distance

The mean distance summary measure is defined as

𝑋𝑠
𝑖 =

∑︀𝑛
𝑖=1(𝑋𝑗 −𝑋𝑖)𝒢𝑖𝑗∑︀𝑛

𝑖=1 𝒢𝑖𝑗

For the covariate X in the data, the mean distance summary measure column is accessed by X_mean_dist.

Variance Distance

The variance distiance summary measure is defined as

𝑋𝑠
𝑖 =

∑︀𝑛
𝑖=1((𝑋𝑗 −𝑋𝑖) − �̄�𝑖)

2𝒢𝑖𝑗∑︀𝑛
𝑖=1 𝒢𝑖𝑗

where

�̄�𝑖 =

∑︀𝑛
𝑖=1𝑋𝑗𝒢𝑖𝑗∑︀𝑛
𝑖=1 𝒢𝑖𝑗

For the covariate X in the data, the variance distance summary measure column is accessed by X_var_dist.

10 Chapter 2. Contents:
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2.2.2 Partially Custom Measures

Partially custom measures allow for some flexibility. These measures include a threshold measure and a category
measure. By default, these are not automatically calculated. They must be specified using the corresponding functions.

These measures are further build upon the basic measures. Therefore, familiarize yourself with the basic measures
before this section.

Threshold

For a specified variable and summary measure, a threshold indicator variable can be created. For example, we may
want to create a summary measure of the action which is an indicator if a unit has more than 3 immediate contacts with
𝐴 = 1. To create this measure, we call

ntmle.define_threshold(variable='A_sum', # Variable to use
threshold=3) # ... set threshold (>, or <=)

This function should be called prior to estimating the nuisance models. Furthermore, the function calculates the thresh-
old measure for the observed data and the Monte-Carlo generated data automatically.

Thresholds can be created for multiple variables by specifying the define_threshold argument multiple times.

To access the threshold summary measure column, use 'A_sum_t3' here. The naming convention works like the
following: variable + underscore + t + threshold.

Category

For a specified variable and summary measure, a categorization is created. For example, we may want to bin W_sum to
reduce the dimension for a power-law network while still trying to model W_sum flexibly. To create a category summary
measure based on user-specified bins, the following function is used:

ntmle.define_category(variable='W_sum', # Variable to bin
bins=[0, 1, 3, 7, 12], # ... bins (includes right)
labels=False) # ... allow for new labels (not␣

→˓recommended)

From this function, a new column consisting of a categorical dummy variable is generated. The naming convention for
this new column is the variable name + underscore + c. Therefore, the new categorical variable would be 'W_sum_c'.

As with the threshold, this function should be called prior to estimating the nuisance models. Furthermore, the function
calculates the threshold measure for the observed data and the Monte-Carlo generated data automatically. Finally,
categories can be created for multiple variables by specifying the define_category argument multiple times.

2.2.3 Fully Custom Measures

Not available yet.

2.2. Summary Measures 11
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2.3 Reference

Documentation for available functions and arguments for those functions are provided here.

2.3.1 Estimators

NetworkTMLE(network, exposure, outcome[, ...]) Implementation of the Targeted Maximum Likelihood
Estimator (TMLE) for network dependent data.

mossspider.estimators.tmle.NetworkTMLE

class NetworkTMLE(network, exposure, outcome, degree_restrict=None, alpha=0.05, continuous_bound=0.0005,
verbose=False)

Implementation of the Targeted Maximum Likelihood Estimator (TMLE) for network dependent data. The fol-
lowing procedure estimates the expected incidence under a treatment plan of interest. For stochastic treatment
plans, the expected incidence is obtained through Monte Carlo integration of a subsample of possible treatment
allotments that correspond to the plan of interest.

Note: Network-TMLE makes the weak dependence assumption, such that only direct contacts’ treatment can
interfere with individual i’s outcome.

Parameters

• network (NetworkX Graph ) – NetworkX undirected network without self-loops. Addi-
tionally, all variables should be stored as attributes for each node. Targetula extracts the
node data from the graph and creates a pandas.DataFrame object from that information.
It is important that no nodes have missing data. Currently there is no procedure to handle
missing data

• exposure (str) – String indicating the exposure variable of interest.

• outcome (str) – String indicating the outcome variable of interest.

• degree_restrict (None, list, tuple, optional) – Restriction on the minimum &
maximum degree for nodes to be included in the estimand. Must be a list with a length of
two, where the first value corresponds to the lower bound and the second is the upper bound
for degree. Values are inclusive. All samples below the first value OR above the second
level are considered as “background” features. Hence the intervention does not change their
exposure.

• alpha (float, optional) – Alpha for confidence interval level. Default is 0.05

• continuous_bound (float, optional) – For continuous outcomes, TMLE needs to
bound Y between 0 and 1. However, 0/1 cannot be included in these bounded values. This
specification sets the bounds for the continuous outcomes. The default is 0.0005.

• verbose (bool, optional) – Whether to print all intermediary model results for the esti-
mation process. When set to True, each of the model results are printed to the console. The
default is False.

Note: mossspider calculates exposure mapping variables automatically with the input network. These vari-

12 Chapter 2. Contents:



MossSpider Documentation, Release 0.0.3

ables are saved as variable-name_map. So for a variable ‘A’, the newly created exposure mapping variable cal-
culated is ‘A_map’

Note: For directed networks, the direction of of influence goes from the target node to the source (i.e. opposite
of the arrow direction). If A –> B then B’s covariates will be part of the A’s summary measures.

Examples

Setting up environment

>>> from mossspider import NetworkTMLE
>>> from mossspider.dgm import uniform_network, generate_observed

Generating a generic network and some data

>>> graph = generate_observed(uniform_network(n=500, degree=[1, 6]))

Estimation with NetworkTMLE (nonparametric summary measure in exposure map model)

>>> tmle = NetworkTMLE(network=graph, exposure='A', outcome='Y')
>>> tmle.exposure_model('W + W_map')
>>> tmle.exposure_map_model('A + W + W_map', distribution=None)
>>> tmle.outcome_model('A + W + A_map + W_map', print_results=False)
>>> tmle.fit(p=0.8, bound=10e5)
>>> tmle.summary()

Estimation with NetworkTMLE (parametric summary measure in exposure map model)

>>> tmle = NetworkTMLE(network=graph, exposure='A', outcome='Y')
>>> tmle.exposure_model('W + W_map')
>>> tmle.exposure_map_model('A + W + W_map', measure='sum', distribution='poisson')
>>> tmle.outcome_model('A + W + A_map + W_map', print_results=False)
>>> tmle.fit(p=0.8, bound=10e5)
>>> tmle.summary()

Estimation with NetworkTMLE and restricting inference by degree

>>> tmle = NetworkTMLE(network=graph, exposure='A', outcome='Y', degree_restrict=[0,
→˓ 5])
>>> tmle.exposure_model('W + W_map')
>>> tmle.exposure_map_model('A + W + W_map', measure='sum', distribution='poisson')
>>> tmle.outcome_model('A + W + A_map + W_map', print_results=False)
>>> tmle.fit(p=0.8, bound=10e5)
>>> tmle.summary()

Diagnostic plot for support of policy of interest in observed data

>>> import matplotlib.pyplot as plt
>>> tmle.diagnostics()
>>> plt.show()

Generating a threshold measure based on a summary measure

2.3. Reference 13
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>>> tmle = NetworkTMLE(network=graph, exposure='A', outcome='Y')
>>> tmle.define_threshold(variable='A_sum', threshold=3) # A_sum_t3

Generating a category measure based on a binned summary measure

>>> tmle = NetworkTMLE(network=graph, exposure='A', outcome='Y')
>>> tmle.define_category(variable='A_sum', bins=[0, 1, 2, 4, 6]) # A_sum_c
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Sofrygin O, Ogburn EL, & van der Laan MJ. (2018). Single Time Point Interventions in Network-Dependent
Data. In Targeted Learning in Data Science (pp. 373-396). Springer.

__init__(network, exposure, outcome, degree_restrict=None, alpha=0.05, continuous_bound=0.0005,
verbose=False)

Methods

__init__(network, exposure, outcome[, ...])

define_category(variable, bins[, labels]) Function arbitrarily allows for multiple different de-
fined thresholds

define_threshold(variable, threshold) Function arbitrarily allows for multiple different de-
fined thresholds

diagnostics([figsize, color_a1, color_a0]) Returns diagnostic plot for the specified network-
TMLE.

exposure_map_model(model[, measure, ...]) Exposure summary measure model for individual i.
exposure_model(model[, custom_model, ...]) Exposure model for individual i.
fit(p[, samples, bound, seed]) Estimation procedure under a specified treatment

plan.
outcome_model(model[, custom_model, ...]) Estimation of the outcome model E(Y|A, A_map, W,

W_map).
summary([decimal]) Prints summary results for the sample average treat-

ment effect under the treatment plan specified in the
fit procedure

exposure_model(model, custom_model=None, custom_model_sim=None)
Exposure model for individual i. Estimates Pr(A=a|W, W_map) using a logistic regression model.

Note: This function only saves the model specifications. IPTW are calculated later during the fit() proce-
dure since the policy is needed.
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Parameters

• model (str) – Exposure mapping model. Ideally would include treatment for individual i

• custom_model – User-specified model

• custom_model_sim – User-specified model. This allows the user to specify a different
IPW model to be fit for the numerator. That model is fit to the simulated data, so some
constraints may be added to speed up the estimation procedure. If None and custom_model
is not None, copies over the custom_model used.

exposure_map_model(model, measure=None, distribution=None, custom_model=None,
custom_model_sim=None)

Exposure summary measure model for individual i. Estimates Pr(A_map=a|A=a, W, W_map) using a
logistic regression model.

Note: Only saves the model specifications. IPTW are calculated later during the fit() function

There are several options for the distributions of the summary measure. One option is a non-parametric
approach that estimates the probability for each individual contact (works best for uniform distributions).
However, this approach may not always be possible to estimate. Instead, parametric distributional assump-
tion can be used instead. Currently, implemented are normal and Poisson distributions.

Parameters

• model (str) – Exposure mapping model. Ideally would include treatment for individual i

• measure (None, str, optional) – Exposure mapping to use for the modeling state-
ment. Options include ‘mean’ and ‘sum’. Default is None which natively works with the
distribution=None option

• distribution (None, str, optional) – Distribution to use for exposure mapping
model. Options include: non-parametric (None), Normal (‘normal’), Poisson (‘poisson’).

• custom_model (None, optional) – User-specified model

• custom_model_sim – User-specified model. This allows the user to specify a different
IPW model to be fit for the numerator. That model is fit to the simulated data, so some
constraints may be added to speed up the estimation procedure. If None and custom_model
is not None, copies over the custom_model used.

outcome_model(model, custom_model=None, distribution='normal')
Estimation of the outcome model E(Y|A, A_map, W, W_map).

Note: Estimates the outcome model (g-formula) using the observed data and generates predictions under
the observed distribution of the exposure.

Parameters

• model (str) – Specified Q-model

• custom_model – User-specified model

• distribution (optional, str) – For non-binary outcome variables, the distribution
of Y must be specified. Default is ‘normal’.
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fit(p, samples=100, bound=None, seed=None)
Estimation procedure under a specified treatment plan.

This function estimates the IPTW for the treatment plan of interest, performs the target steps, and performs
Monte Carlo integration with the targeted model, and calculates confidence intervals. Confidence intervals
are obtained from influence curves.

Parameters

• p (float, int, list, set) – Percent of population to treat. For conditional treatment
plans, a container object of floats. All values must be between 0 and 1

• samples (int) – Number of samples to generate to calculate numerator for weights and
for the Monte Carlo integration procedure for stochastic treatment plans. For determin-
istic treatment plans (p==1 or p==0), samples is set to 1 to reduce computation burden.
Deterministic treatment plan do not require the Monte Carlo integration procedure

• bound (None, int, float) – Bounds to truncate calculate weights by. . .

• seed (int, None) – Random seed for the Monte Carlo integration procedure

summary(decimal=3)
Prints summary results for the sample average treatment effect under the treatment plan specified in the fit
procedure

Parameters decimal (int) – Number of decimal places to display

Returns

Return type None

diagnostics(figsize=(6, 5), color_a1='blue', color_a0='red')
Returns diagnostic plot for the specified network-TMLE. The currently available diagnostic presents plots
of the designated summary measure for 𝐴𝑠 (stratified by 𝐴) for the observed data, and the Monte Carlo
simulated data. This diagnostic can be used to visually assess whether the designated policy is poorly-
supported by the data.

Note: A policy that has little overlap with the observed data is indicative of the policy being poorly
supported by the observed data. Poorly-supported policies may not be well estimated and thus considering
other stochastic policies in recommended.

Parameters

• figsize (list, set, array, optional) – Determine the figure size (dimensions).
Passes directly to plt.subplots(...figsize=figsize).

• color_a1 (str, optional) – Color for the A=1 group in the figure. Default is blue.

• color_a0 (str, optional) – Color for the A=0 group in the figure. Default is red.

Returns

Return type Diagnostic plot for data support of policy.

define_threshold(variable, threshold)
Function arbitrarily allows for multiple different defined thresholds

Parameters

• variable (str) – Variable to generate categories for

• threshold (int, float) – Threshold to use as the cutpoint.
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define_category(variable, bins, labels=False)
Function arbitrarily allows for multiple different defined thresholds

Parameters

• variable (str) – Variable to generate categories for

• bins (list, set, array) – Bin cutpoints to generate the categorical variable for. Uses
pandas.cut(..., include_lowest=True) to create the binned variables.

• labels (list, set, array) – Specified labels. Can be given custom labels, but gener-
ally recommend to keep set as False

2.3.2 Data Generation

uniform_network(n, degree[, pr_w, seed]) Generates a uniform random graph for a set number of
nodes (n) and specified max and min degree (degree).

clustered_power_law_network(n_cluster[, ...]) Generate a graph with the following features: follows a
power-law degree distribution, high(er) clustering coef-
ficient, and an underlying community structure.

generate_observed(graph[, seed]) Simulates the exposure and outcome for the uniform ran-
dom graph (following mechanisms are from Sofrygin &
van der Laan 2017).

generate_truth (graph, p) Simulates the true conditional mean outcome for a given
network, distribution of W, and policy.

mossspider.dgm.uniform_network

uniform_network(n, degree, pr_w=0.35, seed=None)
Generates a uniform random graph for a set number of nodes (n) and specified max and min degree (degree).
Additionally, assigns a binary baseline covariate, W, to each observation.

Parameters

• n (int) – Number of nodes in the generated network

• degree (list, set, array) – An array of two elements. The first element is the mini-
mum degree and the second element is the maximum degree.

• pr_w (float, optional) – Probability of W=1. W is a binary baseline covariate assigned
to each unit.

• seed (int, None, optional) – Random seed to use. Default is None.

Returns

Return type networkx.Graph
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Examples

Loading the necessary functions

>>> from mossspider.dgm import uniform_network

Generating the uniform network

>>> G = uniform_network(n=500, degree=[0, 2])

mossspider.dgm.clustered_power_law_network

clustered_power_law_network(n_cluster, edges=3, pr_cluster=0.75, pr_between=0.0007, pr_w=0.35,
seed=None)

Generate a graph with the following features: follows a power-law degree distribution, high(er) cluster-
ing coefficient, and an underlying community structure. This graph is created by generating a number
of subgraphs with power-law distributions and clustering. The subgraphs are generated using networkx.
powerlaw_cluster_graph(n=n_cluster[...], m=edges, p=p_cluster). This process is repeated for
each element in the n_cluster argument. Then the subgraphs are then randomly connected by creating random
edges between nodes of the subgraphs.

Parameters

• n_cluster (list, set, array, ndarray) – Specify the N for each subgraph in the
clustered power-law network via a list. List should be positive integers that correspond to
the N for each subgraph.

• edges (int, optional) – Number of edges to generate within each cluster. Equivalent to
the m argument in networkx.powerlaw_cluster_graph.

• pr_cluster (float, optional) – Probability of a new node forming a triad with neigh-
bors of connected nodes

• pr_between (float, optional) – Probability of an edge between nodes of each cluster.
Evaluated for all node pairs, so should be relatively low to keep a high community structure.
Default is 0.0007.

• pr_w (float, optional) – Probability of the binary baseline covariate W for the network.
Default is 0.35.

• seed (int, None, optional) – Random seed. Default is None.

Returns

Return type networkx.Graph

Examples

Loading the necessary functions

>>> from mossspider.dgm import clustered_power_law_network

Generating the clustered power-law network

>>> G = clustered_power_law_network(n_cluster=[50, 50, 50, 50])
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mossspider.dgm.generate_observed

generate_observed(graph, seed=None)
Simulates the exposure and outcome for the uniform random graph (following mechanisms are from Sofrygin &
van der Laan 2017).

𝐴 = Bernoulli(expit(−1.2 + 1.5𝑊 + 0.6𝑊 𝑠))

𝑌 = Bernoulli(expit(−2.5 + 0.5𝐴+ 1.5𝐴𝑠 + 1.5𝑊 + 1.5𝑊 𝑠))

Parameters

• graph (Graph ) – Graph generated by the uniform_network function.

• seed (int, None, optional) – Random seed to use. Default is None.

Returns

Return type Network object with node attributes

Examples

Loading the necessary functions

>>> from mossspider.dgm import uniform_network, generate_observed

Generating the uniform network

>>> G = uniform_network(n=500, degree=[0, 2])

Generating exposure A and outcome Y for network

>>> H = generate_observed(graph=G)

References

Sofrygin O, & van der Laan MJ. (2017). Semi-parametric estimation and inference for the mean outcome of the
single time-point intervention in a causally connected population. Journal of Causal Inference, 5(1).

mossspider.dgm.generate_truth

generate_truth(graph, p)
Simulates the true conditional mean outcome for a given network, distribution of W, and policy.

The true mean under the policy is simulated as

𝐴 = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝) 𝑌 = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑒𝑥𝑝𝑖𝑡(−2.5 + 1.5 *𝑊 + 0.5 *𝐴+ 1.5 *𝑚𝑎𝑝(𝐴) + 1.5 *𝑚𝑎𝑝(𝑊 )))

Returns

Return type float
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Examples

Loading the necessary functions

>>> from mossspider.dgm import uniform_network, generate_truth

Generating the uniform network

>>> G = uniform_network(n=500, degree=[0, 2])

Calculating truth for a policy via a large number of replicates

>>> true_p = []
>>> for i in range(1000):
>>> y_mean = generate_truth(graph=G, p=0.5)
>>> true_p.append(y_mean)
>>> np.mean(true_p) # 'true' value for the stochastic policy

To reduce random error, a large number of replicates should be used

2.3.3 Utilities

Plan to add some basic utilities in a future version (such as helping setup the network as NetworkTMLE expects).
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THREE

CODE AND ISSUE TRACKER

Please report bugs, issues, or feature requests on GitHub at pzivich/MossSpider.

Otherwise, you may contact us via email (gmail: zivich.5) or on Twitter (@PausalZ)
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